
it follows that the motion of the free boundary when t > --i is accelerated. 

The main result of the investigation is the following: The velocity of the free 
boundary remains constant in the time interval (to, t~), where time to corresponds to the 
beginning of the flow and t: coincides with the time tf when the free boundary reaches the 
axis of the cylinder if the adiabatic index ~2, and t: < tf if ~>2. In particular, 
when ~>3, the time tl coincides with the time to if the gas was at rest before the flow 
began, 
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EXTREMAL VALUES OF CYLINDER DRAG BEHIND A DISK IN SUPERSONIC FLOW 

I. A. Belov and E. F. Zhigalko UDC 533.601.1 

The authors examine axisymmetric supersonic flow over a cylinder of diameter D, ahead 
of which is mounted a disk of diameter d < D on a thin connecting piece of length I. The 
flow separates on the disk, and near the body surface there is a flow circulation region, 
separated from the external flow by a mixing zone which spans a certain "dividing stream 
area" originating from the disk edge and incident on the end of the cylinder. 

Taking account of the special features of the flow investigated, one can judge that the 
best procedure is to seek a solution of the problem based on a system of exact Navier--Stokes 
equations. However, with all the promise of this type of approach, even when adequately 
efficient numerical algorithms are available, a solution to the Navier-Stokes equations for 
a compressible fluid has been obtained as yet only for low and medium Reynolds numbers. 
An alternative approach is to construct an adequate mathematical model which would describe, 
as far as possible, the main characteristic features of the flow investigated. 

As such an approximate model we choose a numerical model in which a result is obtained 
by applying the "large particle" numerical method [i, 2] to the equations describing the 
motion of an ideal gas -- it reproduces the separated flow over the body in the process of 
establishing the solution corresponding to steady flow. The ideal fluid model has been used 
in a number of papers in investigating separated flows, including that at the front of a 
spiked body (ef. [3, 4]). Among the factors governing the fruitfulness of using this compu- 
tational model the main one is evidently that it reproduces reliably the basic elements of 
the flow outside the circulation zone. The shape and dimensions of this zone are determined 
largely by the geometry of the components. Here we locate a large-scale unit vortex, sepa- 
rated from the walls and the outer flow by a comparatively thin viscous layer in which the 
transverse pressure gradient is small and which does not appreciably affect the pressure 
distribution on the body surface, at least above a certain Reynolds number (from Re ~ 500, 
according to the data of [5]). One would expect that for the body of the composition con- 
sidered here, with d < D, I ~ D, the local Reynolds number for the flow in the circulation 
region will be large enough [5]. On the other hand, it is known that computational schemes 
for ideal gas flows similar to [i, 2], because of their inherent computational "dissipation" 
properties, give results with features characteristic of large Reynolds number flow. 
Finally, one should take into account the known idea that the base pressure depends only 
slightly on Re [6] in supersonic flow at large Reynolds number. 

These considerations support the expectation that the numerical model will in the main 
correctly reflect the actual fluid flow in the entire computed region. The results then ob- 
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tained for the pressure distribution on the body surface determine its profile pressure 
drag, and can be used subsequently in solving the problem of viscous flow and heat transfer 
directly in the wall regions. It is also clear that our understanding of the results of 
applying the computational model to the problem considered will improve as these results 
accumulate. 

The main objective of the calculation is to generalize the data obtained in the numeri- 
cal experiment directed at determination of the aerodynamic properties of a cylinder mounted 
behind a disk in supersonic flow, in order to evaluate the extremal characteristics of the 
configuration. The extremum of the pressure drag Cxp(/, d, M=) of the disk--cylinder combi- 
nation, neglecting the contribution from the base pressure behind the cylinder, lies in the 
quadrant l, d ~ 0 (in defining Cxp here we take the characteristic area to be the cross 
section of the cylinder, and the characteristic dimension to be the cylinder diameter D = 
i)~ For d = 0 and in the absence of the connecting piece (and for d ~ i) Cxp is equal to 
the corresponding value for the cylinder without the disk Cxp. For large l it exceeds Cxp 
by the contribution of the separately washed disk, and for large d it increases as d 2 with 
increase of the disk diameter. In these conditions, because the drag Cxp < Cxp at a cer- 
tain point d, l, it follows that for M~ = const there is a relative and an absolute extremum 
of the continuous function Cxp(/, d). 

The time-dependent method using the "large particle" scheme [i, 2] was employed to 
calculate steady supersonic flow, described by the set of parameters M=, p~ = i, p= = i, 
• ~= cp/c~ ~ I<4, over the combination, at zero angle of attack. The criterion for settling 
of the solution in the computation was smallness of the increment of a characteristic gas- 
dynamic parameter in the time layer. 

Questions relating to formulation of the calculation have been explained in [7], which 
described in detail the main properties of the computing model, using an analysis of the 
pseudophysical process leading to the establishment of steady flow over the body, in a com- 
putation starting with certain nonphysical initial conditions. For example, the result was 
obtained that, independently of the choice of the initial state and the computing regime, 
the answer is single-valued in {1, d, M~}, while the aerodynamic properties of the combina- 
tion (in particular, the decrease of Cxp compared with C~p) were formed in the calculation 
mainly by wave-type effects, due to interaction with the cylinder surface of the bow rare- 
faction wave propagating downstream from the disk, and with the reflected wave travelling 
towards the disk in the opposite direction. 

Figure i shows the relation C~p(M~) obtained in calculating the flow over the face of 
a cylinder, a typical blunt body of convex shape, adjoining the class of bodies con- 
sidered (1 = 0). Figure i also shows a number of experimental values of C~p presented in 
[6] (open points), for Reynolds number defined with respect to D (Re~ = 1.88'106), and our 
experimental data (closed points), obtained for M~ = 0.98, 1.55 (Re~ = 1.1'106 and 6.2"105 , 
respectively). These results show typical accuracy of the computation and can be used for 
a comparative analysis of the aerodynamic characteristics of the combinations presented 
below. 

Figure 2a contains data on the comparative characteristics of the combination con- 
sidered for Moo = 1.77, obtained by summing the results of the bulk calculations. Curves 
1-16 show the Cxp(d) relation for l, which is related to the number n by the formula 1 = 
0.125 (n + i). This information is presented more clearly in Fig. 2b. Here the isolines 
(of nominal pitch 0.05) show surfaces of level Cxp = Cxp(/, d) for M= = 1.77~ It should 
be noted that the behavior of the surface at the edges of the region examined 1 = 0.25 and 
2o125 exhibits the features described above. However, for l = 2.125 the value of Cxp is 
still far away from the sum of the contributions from the individually washed disk and 
cylinder (the absolute minimum in the relation Cxp(/, d) located nearby still has a strong 
influence). The main feature of the relation is the presence in this region of a deep 
trough elongated along the I axis. 
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By correlating results of this kind, obtained by computing the flow around the combi- 
nation considered, located in a stream with various M~ values, one can construct the diagram 
shown in Fig. 3, where the solid lines indicate the geometric location of the relative 
minimum in the relation Cxp(d) (this corresponds to the broken line in Fig. 2a). In Fig. 
3 the parameter I for points n = 1-16 was calculated from the formula I = 0.125 (n + I). 

In examining the results obtained one should have some understanding of their quality. 
In evaluating the "inherent" accuracy of the calculation, whose formulation is not retuned 
to the next variant, one would expect that it would fall off both as M= becomes close to 
one and as I increases, due to the amplification in both cases of the influence of errors 
introduced by conditions of continuous extension at the boundaries of the computational 
region. Because of the limited computational accuracy one should not look for reliability 
in the details in the summed results like those of Fig. 2b, and to an even greater degree 
in Fig. 3. One can see certain circumstances where the deviation of the computing model 
from the actual process increases. It is evident that for d+O the combination is seen by 
the flow as a spiked blunt body. The governing role of the disk as a generator of separa- 
tion vanishes, and the nature of the separated flow is changed. Here the relative con- 
tribution of transport processes is increased. A description of this type of flow can be 
found in [8]. Similar circumstances arise for I >> i, because of the repeated reattachment 
of the flow to the connecting piece. The relative effect of the transport processes also 
increases with reduction of the intensity of flow circulation in the separated zone. 

A review of results like those shown in Figs. 2 and 3 leads to a number of im- 
portant conclusions. 

In all the cases examined (M= < 4, 0 < d < i, 0 < I < 2.5) the computing model gives 
< * Cxp Cxp. In the computing model it is easy to establish the existence of a minimum in 

the relation Cxp(d) at each I in 0 < d < I. 

In a number of cases we found a minimum in the relation Cxp(d, l) (see Fig. 2). A 
relative minimum of Cx~(d) was obtained for d, varying slightly with variation of I. These 
values decreased with zncrease of M~. 
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GENERATION OF INTERNAL WAVES BY BOTTOM ROUGHNESS OF THE INTERFACE 

OF TWO FLUIDS FLOWING AT ANGLES TO EACH OTHER 

I. V. Sturova UDC 551o466.4 

The simplest example of three-dimensional internal waves in a stream whose velocity 
varies with depth in both magnitude and direction is waves on the interfaeial surface of 
two fluids of different densities flowing at an angle to one another. Investigation of the 
kinematic characteristics of the wave motion in such a fluid under the condition that the 
depth of the lower layer is infinite was performed in [i]. The asymptotic behavior of waves 
on the interfacial surface that occur during the flow around a body for the case of in- 
finitely deep layers and of an obstacle on the bottom under the condition of infinite thick- 
ness of the upper layer was examined in [2]. The stability of waves occurring on the inter- 
facial surface of two infinite streams flowing at an angle to each other was investigated 
in [3]. 

Let us consider the flow around an elevation described by the function f(x, z), by a 
stream infinite in the horizontal directions, in whose upper layer of thickness Hi the 
fluid density is 01, while it is 02 = p~(l + ~)(e~0) in the lower layer of thickness 
H=. The velocity of the lower stream is Ua and is along the x axis, while the velocity of 
the upper stream is U~ and makes an angle a with the x axis. The x and z axes are on the 
unperturbed interfacial surface, the y axis is vertically upward, and the axis of symmetry 
of the obstacle passes through the origin. 

Assuming the fluid motion within each layer to he irrotational, and the perturbations 
on the free surface and the interfacial surface to be small, we write the equations for the 
velocity potentials of the perturbed motion in each layer in the form 

A~I=0 for O<~y~HI, Ag~=0 ~ r  --l[~g < 0 (i) 

with boundary conditions on the free surface (y = HI) 

O~/Oy-FL~ = O, L ~  = g~; (2)  

on the interfacial surface (y = O) 

O ~ i / O y q - L ~  = O, O~JOy ' -~ -L~  = O, p ~ L 2 % - - p i L i g i  = g (P~- -PO~;  (3)  
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